Cardiac mortality after revascularization in light of the ISCHEMIA trial

Prof. Eliano P. Navarese
MD, PhD, FESC, FACC

Associate professor,
Head Clinical and Experimental Cardiology
Department of Clinical Interventional Cardiology,
University of Sassari, Sardinia island, Italy
Disclosures

Research grants from Abbott, Amgen, outside the submitted work.

- Lecture fees/honoraria from Amgen, Astra-Zeneca, Bayer, Pfizer and Sanofi-Regeneron, KYE Pharmaceuticals.
Determinants of the clinical effect with revascularization on a global scale

Risk multipliers: anatomic ischemic burden and degree of ischemia
Breakdown of Mortality as trial endpoint

- All-cause mortality
- CV mortality
- Non cardiac mortality

CV + non cardiac

Competing risk on CV death

Cancer
Sepsis
Other
Cardiac mortality endpoint in CV revasc trials and meta-analyses

- More specifically related to disease
- Avoids competing risks of non cardiac modes of death
- Greater power required for all-cause death: trends over the decades for proportional increases of noncardiac vs cardiac deaths

Navarese. Eur Heart J. 2021 Dec 1;42(45):4699-4700

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Examples of evidence–based cardiovascular medicine trials not using total mortality as the primary endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial</td>
<td>Treatment</td>
</tr>
<tr>
<td>ISIS 2</td>
<td>Aspirin/streptokinase vs. placebo</td>
</tr>
<tr>
<td>CURE</td>
<td>Clopidogrel vs. placebo</td>
</tr>
<tr>
<td>PLATO</td>
<td>Ticagrelor vs. clopidogrel</td>
</tr>
<tr>
<td>ISCHEMIA</td>
<td>Revascularization vs. conservative strategy</td>
</tr>
</tbody>
</table>

White. Eur Heart J. 2021 Dec 1;42(45):4697-4698.
Trends in cause of death following PCI

Cumulative incidence (%)

Years after PCI

Cardiac

- 1991-1996 (n=5115)
- 1997-2000 (n=7326)
- 2003-2008 (n=6636)

Non-Cardiac

Years after PCI

Spoon et al. Circ 2014;129:1286-1294
Cardiac mortality endpoint in CV revasc trials and meta-analyses

- More specifically related to disease
- Avoids competing risks of non cardiac modes of death
- Greater power required for all-cause death: trends over the decades for proportional increases of noncardiac vs cardiac deaths

Navarese. Eur Heart J. 2021 Dec 1;42(45):4699-4700

Table 1. Examples of evidence–based cardiovascular medicine trials not using total mortality as the primary endpoint

<table>
<thead>
<tr>
<th>Trial</th>
<th>Treatment</th>
<th>Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISIS 2</td>
<td>Aspirin/streptokinase vs. placebo</td>
<td>Vascular death</td>
</tr>
<tr>
<td>CURE</td>
<td>Clopidogrel vs. placebo</td>
<td>Cardiovascular death, nonfatal MI, or stroke</td>
</tr>
<tr>
<td>PLATO</td>
<td>Ticagrelor vs. clopidogrel</td>
<td>Death from vascular causes, MI, or stroke</td>
</tr>
<tr>
<td>ISCHEMIA</td>
<td>Revascularization vs. conservative strategy</td>
<td>Cardiovascular death, MI, hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest</td>
</tr>
</tbody>
</table>

White. Eur Heart J. 2021 Dec 1;42(45):4697-4698.
ISCHEMIA trial Primary Outcome: CV Death, MI, hospitalization for UA, HF or resuscitated cardiac arrest

Adjusted Hazard Ratio = 0.93 (0.80, 1.08)

Median FU= 3.2 yrs

Cardiovascular Death	Cumulative difference
2-year | -0.3%
3-year | -0.6%
4-year | -1.0
5-year | -1.3%

Adequate power for mortality as individual endpoint

- 15,000 pts required to address cardiac mortality on Trial Sequential Analysis

Favours revascularisation

Favours medical therapy (MT)

ISCHEMIA trial: n= 5,179

Adjusted Hazard Ratio = 0.87 (0.66, 1.15)
P-value = 0.33
Methods
• Rates rather than crude number of events because they incorporate trial duration
• Heterogeneity assessed by I^2 statistic
• Random-effects model (primary model)
 • Trial sequential analysis with sequential monitoring boundaries (benefit/futility)
• Sensitivity analysis without ACS, CTO, CABG
• Meta-regressions for the impact of follow-up duration, trial medications, absolute differences for MI on cardiac death

Inclusion Criteria
- Clinically stable CAD pts undergoing elective revascularization (planned, deferrable, non urgent/non emergent) plus medical therapy (MT) or medical therapy alone
- Clinical stability defined by absence of symptoms or signs of ischaemia at rest

Updated Systematic search

Post-ACS studies additional criteria:
1) absence of symptoms or signs of ischaemia at rest.
2) by protocol a myocardial stress test as an additional criterion of clinical stability.
Revasc+MT vs MT alone in stable patients: Primary endpoint

<table>
<thead>
<tr>
<th>Study</th>
<th>Revascularisation+MT Events</th>
<th>Revascularisation+MT P-Y</th>
<th>MT alone Events</th>
<th>MT alone P-Y</th>
<th>Cardiac mortality</th>
<th>RR</th>
<th>95%−CI</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathur (1979)</td>
<td>8</td>
<td>308.00</td>
<td>12</td>
<td>330.00</td>
<td></td>
<td>0.71</td>
<td>[0.29; 1.75]</td>
<td>3.0%</td>
</tr>
<tr>
<td>ECSS (1988)</td>
<td>46</td>
<td>4728.00</td>
<td>76</td>
<td>4476.00</td>
<td></td>
<td>0.57</td>
<td>[0.40; 0.83]</td>
<td>11.7%</td>
</tr>
<tr>
<td>AVERT (1999)</td>
<td>1</td>
<td>265.50</td>
<td>1</td>
<td>246.00</td>
<td></td>
<td>0.93</td>
<td>[0.06; 14.81]</td>
<td>0.3%</td>
</tr>
<tr>
<td>MASS-1 (1999)</td>
<td>6</td>
<td>710.00</td>
<td>2</td>
<td>360.00</td>
<td></td>
<td>1.52</td>
<td>[0.31; 7.54]</td>
<td>1.0%</td>
</tr>
<tr>
<td>RITA-2 (2003)</td>
<td>13</td>
<td>3528.00</td>
<td>22</td>
<td>3598.00</td>
<td></td>
<td>0.60</td>
<td>[0.30; 1.12]</td>
<td>4.8%</td>
</tr>
<tr>
<td>TIME (2004)</td>
<td>32</td>
<td>612.00</td>
<td>34</td>
<td>592.00</td>
<td></td>
<td>0.91</td>
<td>[0.56; 1.48]</td>
<td>8.2%</td>
</tr>
<tr>
<td>INSPIRE (2006)</td>
<td>1</td>
<td>104.00</td>
<td>2</td>
<td>101.00</td>
<td></td>
<td>0.49</td>
<td>[0.04; 5.36]</td>
<td>0.5%</td>
</tr>
<tr>
<td>COURAGE (2007)</td>
<td>23</td>
<td>5285.40</td>
<td>25</td>
<td>5234.80</td>
<td></td>
<td>0.91</td>
<td>[0.52; 1.61]</td>
<td>6.5%</td>
</tr>
<tr>
<td>SWISSI-2 (2007)</td>
<td>3</td>
<td>979.20</td>
<td>22</td>
<td>1071.00</td>
<td></td>
<td>0.15</td>
<td>[0.04; 0.50]</td>
<td>1.7%</td>
</tr>
<tr>
<td>JSAP (2009)</td>
<td>2</td>
<td>633.60</td>
<td>3</td>
<td>633.60</td>
<td></td>
<td>0.67</td>
<td>[0.11; 3.99]</td>
<td>0.8%</td>
</tr>
<tr>
<td>BARI 2D (2009)</td>
<td>72</td>
<td>5880.00</td>
<td>64</td>
<td>5960.00</td>
<td></td>
<td>1.14</td>
<td>[0.81; 1.60]</td>
<td>12.9%</td>
</tr>
<tr>
<td>MASS-2 (2010)</td>
<td>51</td>
<td>4080.00</td>
<td>42</td>
<td>2030.00</td>
<td></td>
<td>0.60</td>
<td>[0.40; 0.91]</td>
<td>10.2%</td>
</tr>
<tr>
<td>DEFER (2015)</td>
<td>4</td>
<td>1350.00</td>
<td>5</td>
<td>1365.00</td>
<td></td>
<td>0.81</td>
<td>[0.22; 3.01]</td>
<td>1.5%</td>
</tr>
<tr>
<td>ORBITA (2017)</td>
<td>0</td>
<td>11.55</td>
<td>0</td>
<td>10.45</td>
<td></td>
<td>0.90</td>
<td>[0.02; 45.60]</td>
<td>0.2%</td>
</tr>
<tr>
<td>REVASC (2018)</td>
<td>0</td>
<td>101.00</td>
<td>2</td>
<td>104.00</td>
<td></td>
<td>0.21</td>
<td>[0.01; 4.29]</td>
<td>0.3%</td>
</tr>
<tr>
<td>EURO-CTO (2018)</td>
<td>7</td>
<td>777.00</td>
<td>2</td>
<td>411.00</td>
<td></td>
<td>1.85</td>
<td>[0.38; 8.91]</td>
<td>1.1%</td>
</tr>
<tr>
<td>FAME-2 (2018)</td>
<td>11</td>
<td>2252.88</td>
<td>7</td>
<td>2222.64</td>
<td></td>
<td>1.55</td>
<td>[0.60; 4.00]</td>
<td>2.7%</td>
</tr>
<tr>
<td>DECISION-CTO (2019)</td>
<td>8</td>
<td>1668.00</td>
<td>14</td>
<td>1592.00</td>
<td></td>
<td>0.55</td>
<td>[0.23; 1.30]</td>
<td>3.2%</td>
</tr>
<tr>
<td>ISCHEMIA (2020)</td>
<td>92</td>
<td>8281.60</td>
<td>111</td>
<td>8291.20</td>
<td></td>
<td>0.83</td>
<td>[0.63; 1.09]</td>
<td>15.6%</td>
</tr>
<tr>
<td>ISCHEMIA-CKD (2020)</td>
<td>76</td>
<td>853.60</td>
<td>82</td>
<td>855.80</td>
<td></td>
<td>0.93</td>
<td>[0.68; 1.27]</td>
<td>13.9%</td>
</tr>
</tbody>
</table>

Random-effects model 456 42409.33 528 39484.49
Heterogeneity: $I^2 = 21\%$, $\tau^2 = 0.0251$, $p = 0.19$
Test for overall effect: $z = -2.76$ ($p < 0.01$)
Favours Revascularisation+MT Favours MT alone

21% cardiac death risk reduction with revasc + MT vs MT alone at 5.7 yrs

Secondary endpoint: Spontaneous MI

<table>
<thead>
<tr>
<th>Study</th>
<th>Revascularisation + MT Events</th>
<th>P-Y</th>
<th>MT alone Events</th>
<th>P-Y</th>
<th>Spontaneous MI</th>
<th>RR</th>
<th>95% CI</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathur (1979)</td>
<td>9</td>
<td>308.00</td>
<td>13</td>
<td>330.00</td>
<td></td>
<td>0.74</td>
<td>[0.32; 1.74]</td>
<td>2.6%</td>
</tr>
<tr>
<td>ACIP (1997)</td>
<td>7</td>
<td>384.00</td>
<td>18</td>
<td>732.00</td>
<td></td>
<td>0.74</td>
<td>[0.31; 1.77]</td>
<td>2.5%</td>
</tr>
<tr>
<td>ACME-1 (1997)</td>
<td>10</td>
<td>575.00</td>
<td>8</td>
<td>560.00</td>
<td></td>
<td>1.22</td>
<td>[0.48; 3.08]</td>
<td>2.2%</td>
</tr>
<tr>
<td>ACME-2 (1997)</td>
<td>5</td>
<td>255.00</td>
<td>5</td>
<td>250.00</td>
<td></td>
<td>0.98</td>
<td>[0.28; 3.39]</td>
<td>1.3%</td>
</tr>
<tr>
<td>AVER (1999)</td>
<td>5</td>
<td>265.50</td>
<td>4</td>
<td>246.00</td>
<td></td>
<td>1.16</td>
<td>[0.31; 4.31]</td>
<td>1.2%</td>
</tr>
<tr>
<td>MASS-1 (1999)</td>
<td>7</td>
<td>710.00</td>
<td>3</td>
<td>360.00</td>
<td></td>
<td>1.18</td>
<td>[0.31; 4.58]</td>
<td>1.1%</td>
</tr>
<tr>
<td>RITA-2 (2003)</td>
<td>25</td>
<td>3528.00</td>
<td>23</td>
<td>3598.00</td>
<td></td>
<td>1.11</td>
<td>[0.63; 1.95]</td>
<td>5.3%</td>
</tr>
<tr>
<td>TIME (2004)</td>
<td>20</td>
<td>612.00</td>
<td>21</td>
<td>592.00</td>
<td></td>
<td>0.92</td>
<td>[0.50; 1.70]</td>
<td>4.6%</td>
</tr>
<tr>
<td>COURAGE (2007)</td>
<td>108</td>
<td>5285.40</td>
<td>119</td>
<td>5234.80</td>
<td></td>
<td>0.90</td>
<td>[0.69; 1.17]</td>
<td>14.7%</td>
</tr>
<tr>
<td>SWISSI-2 (2007)</td>
<td>11</td>
<td>979.20</td>
<td>40</td>
<td>1071.00</td>
<td></td>
<td>0.30</td>
<td>[0.15; 0.59]</td>
<td>4.0%</td>
</tr>
<tr>
<td>JSAP (2008)</td>
<td>3</td>
<td>633.60</td>
<td>7</td>
<td>633.60</td>
<td></td>
<td>0.43</td>
<td>[0.11; 1.66]</td>
<td>1.1%</td>
</tr>
<tr>
<td>BARI 2D (2009)</td>
<td>96</td>
<td>5880.00</td>
<td>138</td>
<td>5960.00</td>
<td></td>
<td>0.71</td>
<td>[0.54; 0.91]</td>
<td>14.7%</td>
</tr>
<tr>
<td>MASS-2 (2010)</td>
<td>48</td>
<td>4080.00</td>
<td>42</td>
<td>2030.00</td>
<td></td>
<td>0.57</td>
<td>[0.38; 0.86]</td>
<td>8.5%</td>
</tr>
<tr>
<td>DEFER (2015)</td>
<td>9</td>
<td>1350.00</td>
<td>2</td>
<td>1365.00</td>
<td></td>
<td>4.55</td>
<td>[0.98; 21.06]</td>
<td>0.9%</td>
</tr>
<tr>
<td>REVASC (2018)</td>
<td>0</td>
<td>101.00</td>
<td>1</td>
<td>104.00</td>
<td></td>
<td>0.34</td>
<td>[0.01; 8.43]</td>
<td>0.2%</td>
</tr>
<tr>
<td>EURO-CTO (2018)</td>
<td>6</td>
<td>777.00</td>
<td>2</td>
<td>411.00</td>
<td></td>
<td>1.59</td>
<td>[0.32; 7.86]</td>
<td>0.8%</td>
</tr>
<tr>
<td>FAME-2 (2018)</td>
<td>29</td>
<td>2235.00</td>
<td>45</td>
<td>2205.00</td>
<td></td>
<td>0.64</td>
<td>[0.40; 1.01]</td>
<td>7.2%</td>
</tr>
<tr>
<td>DECISION-CTO (2019)</td>
<td>7</td>
<td>1668.00</td>
<td>7</td>
<td>1592.00</td>
<td></td>
<td>0.95</td>
<td>[0.33; 2.72]</td>
<td>1.8%</td>
</tr>
<tr>
<td>ISCHEMIA (2020)</td>
<td>130</td>
<td>8281.60</td>
<td>196</td>
<td>8291.20</td>
<td></td>
<td>0.66</td>
<td>[0.53; 0.83]</td>
<td>17.0%</td>
</tr>
<tr>
<td>ISCHEMIA-CKD (2020)</td>
<td>37</td>
<td>853.60</td>
<td>52</td>
<td>855.60</td>
<td></td>
<td>0.71</td>
<td>[0.47; 1.09]</td>
<td>8.3%</td>
</tr>
</tbody>
</table>

Random-effects model: $I^2 = 21\%$, $\tau^2 = 0.0192$, $p = 0.19$

Test for overall effect: $z = -4.00$ ($p < 0.01$)

Favours Revascularisation + MT Favours MT alone

0.1 0.2 0.5 1 2 5 10

26% spontaneous MI risk reduction with revasc + MT vs MT alone
Benefits of revascularisation: overall and in prespecified subgroups

Sensitivity analyses excluding studies

- After ISCHEMIA exclusion (~ 1.3 ARD at 5 yrs):
 RR 0.78 [0.65; 0.95]
Lower spontaneous MI with revasc ≈ lower cardiac death

Significant association btw cardiac death and spontaneous MI
Procedural MI
Type 4a or 5 MI

Adjusted Hazard Ratio = 2.98 (1.87, 4.74)
P-value = <0.01

Spontaneous MI: types 1, 2, 4b, or 4c

Adjusted Hazard Ratio = 0.67 (0.53, 0.83)
P-value = <0.01

CV Death
Procedural MI: 245(13)
Procedural Type 4a or 5 MI: 115(8)
Procedural MI (INV Only): 204(12)
Type 4a/5 MI: 35(5)
Type 1 MI: 223(21)

HR (95% CI) P value
1.24 (0.57, 2.68) 0.592
1.95 (0.79, 4.84) 0.149
1.54 (0.70, 3.43) 0.286
6.17 (2.48, 15.35) <.001
3.52 (2.11, 5.88) <.001

Chaitman. Circulation 2021; 143:790-804
No association between cardiac death and periprocedural MI
Cardiac death and length of follow-up

Navarese et al. EHJ 2021;42:4638-51

19% cardiac death relative risk reduction per 4-yr follow-up increase: 0.81 [0.69-0.96]
Consistent lower mortality or MI at long term (10 yrs) in large-scale observational studies

Rozanski JACC 2022

Bainey JAHA 2021
Outcomes at 10 year F/U in the MASS-2 RCT

<table>
<thead>
<tr>
<th></th>
<th>PCI</th>
<th>CABG</th>
<th>MT</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary endpoint</td>
<td>42.4</td>
<td>33</td>
<td>59.1</td>
<td><0.001</td>
</tr>
<tr>
<td>All-cause death</td>
<td>24.1</td>
<td>51.1</td>
<td>31</td>
<td>0.08</td>
</tr>
<tr>
<td>Cardiac death</td>
<td>14.3</td>
<td>10.8</td>
<td>20.7</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Question 2:

Does the suboptimal therapy in older studies favor revasc?

Hueb. Circulation. 2010 Sep 7;122(10):949-57
Answer to question 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Beta</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antithrombotic agents</td>
<td>-0.01</td>
<td>0.27</td>
</tr>
<tr>
<td>Statins</td>
<td>0.001</td>
<td>0.71</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>-0.001</td>
<td>0.91</td>
</tr>
<tr>
<td>ACE inhibitors/ARBs</td>
<td>0.005</td>
<td>0.11</td>
</tr>
<tr>
<td>Study year</td>
<td>0.01</td>
<td>0.16</td>
</tr>
</tbody>
</table>

No significant association btw effects of strategy on cardiac death and - medical therapy - study year

- Balanced MT in both arms in each RCT (strength of RCTs)
- No effect of trial chronology

Balanced Randomization

Invasive strategy + MT vs MT alone

Sinergy between revascularisation+MT

MACCE with PCI and CABG based on LDL-C thresholds in DM: pooled analysis

Navarese et al. J Am Coll Cardiol 2020;76:2208–11
Annual mortality risk as a function of the severity of coronary artery disease (CAD)
Risk multiplier
Meta-regression of cardiac death in relation to % of MV disease

Outcomes for INV-CR versus CON: Primary endpoint

Anatomic CR achieved

<table>
<thead>
<tr>
<th>Cumulative incidence (%)</th>
<th>CV death or MI</th>
<th>Difference INV-CON [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-month difference INV-ACR vs. CON</td>
<td>1.8% (-0.9% 4.1%)</td>
<td>Two-vessel CAD ≥70% or three-vessel ≥50% or 70% proximal LAD</td>
</tr>
<tr>
<td>4-year difference INV-ACR vs. CON</td>
<td>-3.5% (-7.4% to 0.1%)</td>
<td>Three vessel CAD ≥70% or two-vessel ≥70% including proximal LAD</td>
</tr>
</tbody>
</table>

Reynolds . Circulation. 2022 Jun 7;145(23):e1072. doi:
Long-term follow-up in ISCHEMIA-EXTEND

Hochman, Circulation 2023 Jan 3;147(1):8-19.

ISECHMIA-EXTEND was designed as a pragmatic long-term follow-up study of mortality.
Participant Flow for Long-Term Follow-Up in ISCHEMIA-EXTEND

ISCHEMIA Randomized Participants (n=5179)

- Randomized to INV (n=2588)
 - Death (n=145)
 - Withdrew and no database search allowed (n=18)
 (Censored thereafter)
 - Site/participant declined extended follow-up (n=18)
 (Censored thereafter)
 - Eligible* for extended follow-up (n=2407)
 Data collected during extended follow-up (2267)

- Randomized to CON (n=2591)
 - Death (n=144)
 - Withdrew and no database search allowed (n=11)
 (Censored thereafter)
 - Site/participant declined extended follow-up (n=18)
 (Censored thereafter)
 - Eligible* for extended follow-up (n=2418)
 Data collected during extended follow-up (2273)

Eligible= survived the original trial phase, did not withdraw consent, and did not decline long-term follow-up

Hochman, Circulation 2023 Jan 3;147(1):8-19
Extended follow-up - 5.7 years median

Cumulative incidence of cardiovascular death

Conservative vs Invasive

INV:CON Adjusted HR = 0.78, 95% CI: 0.63, 0.96
P-value= 0.008 (Fine-Gray)

No. at Risk

Conservative: 2591 2564 2516 2477 2378 1699 1137 575 195
Invasive: 2588 2544 2509 2476 2373 1697 1116 564 174

Hochman, Circulation 2023 Jan 3;147(1):8-19.
A meta-analysis showed a significant cardiac mortality reduction in CCS with revascularization+ medical therapy (MT) vs MT alone. These findings have been confirmed in the ISCHEMIA-EXTEND study.

Navarese, Eur Heart J. 2021;42(45):4638-4651.

<table>
<thead>
<tr>
<th>Cardiac Death</th>
<th>META-ANALYSIS</th>
<th>RR [95% CI]</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0.79 [0.67:0.93]</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>without post-ACS</td>
<td>0.82 [0.73:0.94]</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>without CTO</td>
<td>0.80 [0.67:0.95]</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>without CABG</td>
<td>0.83 [0.71:0.98]</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

Hochman, Circulation 2023 Jan 3;147(1):8-19.
Cardiac mortality reduction multipliers

cardiac mortality with revascularization + MT vs MT alone and MV disease

![Graph showing cumulative incidence of myocardial infarction or cardiovascular death over time since angiography.](image)

![Graph showing log RRR for cardiac mortality vs multivessel disease.](image)

Navarese. EHJ 2021;42:4638-51
Clear benefits of revascularization vs. OMT alone are a function of:

- **The synergy of revasc and optimal MT strategies** that patient vulnerability

- Appropriate **endpoint selection**: cardiac mortality-more specific than all-cause death- to avoid competing risks that dilute benefits, driven by spontaneous MI vs no impact of small procedural MIs.

- **Length of follow-up** (>4.5 yrs) to allow for event over time and event accrual in the untreated group. Every 4 years, a 19% reduction of cardiac death events may be expected with revasc.

- Significantly CV mortality and spontaneous MI events expected on a global scale with large numbers (N > 15000 for CV mortality) of individuals treated

- Extent, severity and ischemic impact of CAD, and the likelihood of achieving complete revascularisation increase the chance of improved outcomes.

Contact: elianonavarese@gmail.com; Twitter: @ElianoNavarese
E(expected CV death reduction from revasc) = M(MV disease) C(cycle of life-FU)^2

If your patient has longer life expectation, risk multipliers such as multivessel disease, revascularization will likely reduce cardiac mortality at FU. Be patient and you will observe the effect.

Thank you!

Contacts:
elianonavarese@gmail.com
Twitter: @ElianoNavarese